Понятия со словосочетанием «линейная алгебра»
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают...
Связанные понятия
Дискретная дифференциальная геометрия — раздел математики, в котором исследуются дискретные аналоги объектов дифференциальной геометрии: вместо гладких кривых и поверхностей рассматриваются многоугольники, полигональные сетки и симплициальные комплексы.
Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
Гомологическая алгебра — ветвь алгебры, изучающая алгебраические объекты, заимствованные из алгебраической топологии. Первыми гомологические методы в алгебре применили в 40-х годах XX века Фаддеев, Дмитрий Константинович, С. Эйленберг и С. Маклейн при изучении расширений групп.
Интерполяция линейных операторов — направление функционального анализа. рассматривающее банаховы пространства как элементы некоторой категории. Общая теория интерполяции линейных операторов была разработана, начиная с 1958 года, в работах С. Г. Крейна, Ж.-Л. Лионса, Ж. Петре. Имеет многочисленные приложения в теории рядов Фурье, в теории приближений, в теории уравнений в частных производных.
Многомерный комплексный анализ — раздел математики, изучающий голоморфные функции нескольких комплексных переменных, определенные в многомерном комплексном пространстве, голоморфные отображения и подмногообразия комплексного пространства. Начало систематическому изучению многомерных комплексных функций было положено К. Вейерштрассом и А. Пуанкаре в конце XIX века. А. Пуанкаре распространил на функции нескольких переменных основную теорему Коши и заложил основы многомерной теории вычетов. Методы многомерного...
Прострáнством называется математическое множество, имеющее структуру, определяемую аксиоматикой свойств его элементов (например, точек в геометрии, векторов в линейной алгебре, событий в теории вероятностей и так далее).Подмножество пространства называется «подпространством», если структура пространства индуцирует на этом подмножестве структуру такого же типа (точное определение зависит от типа пространства).
Подробнее: Пространство (математика)
А́лгебра Ли — объект общей алгебры. Естественно появляется при изучении инфинитезимальных свойств групп Ли.
Теорема Пуанкаре о векторном поле (также известна как теорема Пуанкаре — Хопфа и теорема об индексе) — классическая теорема дифференциальной топологии и теории динамических систем;
В математике, симметрической алгеброй S(V) (также обозначается Sym(V)) векторного пространства V над полем K называется свободная коммутативная ассоциативная K-алгебра с единицей, содержащая V.
Подробнее: Симметрическая алгебра
Топологическая комбинаторика — это молодая область математики, возникшая в последней четверти 20-го века, которая занимается следующими вопросами...
Конечномерный оператор — ограниченный линейный оператор в банаховом пространстве, множество значений которого конечномерно.
Γ-сходимость (
Гамма-сходимость) – концепция сходимости функционалов, возникающая в вариационном исчислении, а также при изучении дифференциальных уравнений в частных производных.
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Алгебры
вершинных операторов впервые были введены Ричардом Борчердсом (англ.) в 1986 году. Имеет важное значение для теории струн, конформной теории поля (англ.) и для смежных областей физики. Аксиомы алгебры вершинных операторов — это формальная алгебраическая интерпретация того, что физики называют хиральной алгеброй.
Вычислительная топология или алгоритмическая топология — дисциплина, находящаяся на пересечении топологии, вычислительной геометрии и теории вычислительной сложности. Её основными задачами являются создание эффективных алгоритмов для решения топологических проблем и применение топологических методов для решения алгоритмических проблем, возникающих в других областях науки.
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Граничные условия Дирихле первого рода — тип граничных условий, названный в честь немецкого математика П. Г. Дирихле. Условие Дирихле, применённое к обыкновенным дифференциальным уравнениям или к дифференциальным уравнениям в частных производных, определяет поведение системы на границе области. Задача о нахождении таких условий называется задачей Дирихле.
Геометрическая теория групп — область математики, изучающая конечно-порождённые группы с помощью связей между их алгебраическими свойствами и топологическими и геометрическими свойствами пространств, на которых такие группы действуют, либо самих групп, рассматриваемых как геометрические объекты (что обычно делается рассмотрением графа Кэли и соответствующей словарной метрики).
Теорема о замкнутом графике — важный результат функционального анализа, устанавливающая критерий ограниченности линейного оператора между банаховыми пространствами.
Теорема Пикара — теорема о существовании и единственности решения обыкновенного дифференциального уравнения первого порядка.
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...
Общая алгебра (также абстрактная алгебра, высшая алгебра) — раздел математики, изучающий алгебраические системы (также иногда называемые алгебраическими структурами), такие как группы, кольца, поля, модули, решётки, а также отображения между такими структурами.
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
Алгебра Хопфа — ассоциативная алгебра над полем, имеющая единицу, и являющаяся также коассоциативной коалгеброй с коединицей и, таким образом, биалгеброй c антигомоморфизмом специального вида. Названа в честь Х. Хопфа.
Представле́ние гру́ппы (точнее, линейное представление группы) — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.
Преобразование в математике — отображение (функция) множества в себя. Иногда (в особенности в математическом анализе и геометрии) преобразованиями называют отображения, переводящие некоторое множество в другое множество.
Гиперко́мпле́ксные числа — различные расширения вещественных чисел, такие как комплексные числа, кватернионы и пр.
Подробнее: Гиперкомплексное число
В вычислительной математике многочлены Бернштейна — это алгебраические многочлены, представляющие собой линейную комбинацию базисных многочленов Бернштейна.Устойчивым алгоритмом вычисления многочленов в форме Бернштейна является алгоритм де Кастельжо.
Теорема о монотонной сходимости (теорема Беппо́ Ле́ви) — это теорема из теории интегрирования Лебега, имеющая фундаментальное значение для функционального анализа и теории вероятностей, где служит инструментом для доказательства многих положений. Даёт одно из условий при которых можно переходить к пределу под знаком интеграла Лебега, теорема позволяет доказать существование суммируемого предела у некоторых ограниченных функциональных последовательностей.
Теория интегрируемых систем — раздел математической физики, изучающий недиссипативные решения дифференциальных уравнений, в том числе уравнений в частных производных. Такие системы имеют соответствующие высшие симметрии.
Критерий Лиувилля — Мордухай-Болтовского — критерий существования решения в обобщенных квадратурах линейного однородного обыкновенного дифференциального уравнения произвольного порядка.
В математике (общей алгебре) многочлен от нескольких переменных над полем называется гармоническим, если лапласиан этого многочлена равен нулю.
Подробнее: Гармонический многочлен
Алгебра Клини — в теоретической информатике, специальная алгебраическая структура, введённая американским математиком Стивеном Клини, являющаяся обобщением алгебры регулярных выражений.
Теорема о сфере — классическое утверждение трёхмерной топологии, доказанное Христосом Папакирьякопулосом в 1956 году вместе с леммой Дена и теоремой о петле.
Топологическое векторное пространство, или топологическое линейное пространство, — векторное пространство, наделённое топологией, относительно которой операции сложения и умножения на число непрерывны.
Интегра́л Юнга — обобщение понятия интеграла Римана и Дарбу, эквивалентное интегралу Лебега. Дано Юнгом в 1905 году. Основная идея Юнга состояла в расширении понятия интеграла Римана путём замены сегментов разбиения множествами и в допущении счетных разбиений.
Комбинаторная или дискретная геометрия — раздел геометрии, в котором изучаются комбинаторные свойства геометрических объектов и связанные с ними конструкции. В комбинаторной геометрии рассматривают конечные и бесконечные дискретные множества или структуры базовых однотипных геометрических объектов (точек, прямых, окружностей, многоугольников, тел с одинаковым диаметром, целочисленных решёток и т. п.) и ставят вопросы, связанные со свойствами различных геометрических конструкций из этих объектов или...
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Дифференциа́льное уравне́ние Ри́мана — обобщение гипергеометрического уравнения, позволяющее получить регулярные сингулярные точки в любой точке сферы Римана. Названо в честь математика Бернхарда Римана.
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры (особенно коммутативной) для решения задач, возникающих в геометрии.
Теория чисел, или высшая арифметика, — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
Конформное отображение — непрерывное отображение, сохраняющее углы между кривыми, а значит и форму бесконечно малых фигур.